大家好,我是小❤,一个漂泊江湖多年的 985 非科班程序员,曾混迹于国企、互联网大厂和创业公司的后台开发攻城狮。
当我那天拿着手机,正在和朋友们的微信群里畅聊着八卦新闻和即将到来的周末计划时,忽然一条带着喜意的消息扑面而来,消息正中间赫然写着八个大字:恭喜发财,大吉大利。
图片
抢红包!!相信大部分人对此都不陌生,自 2015 年春节以来,微信就新增了各类型抢红包功能,吸引了数以亿万级的用户参与体验,今天,我们就来聊一聊这个奇妙有趣的红包系统。
图片
抢红包系统从功能拆分,可以分为包红包、发红包、抢红包和拆红包 4 个功能。
对于系统特性来说,抢红包系统和秒杀系统类似。
图片
每次发红包都是一次商品秒杀流程,包括商品准备,商品上架,查库存、减库存,以及秒杀开始,最终的用户转账就是红包到账的过程。
相比秒杀活动,微信发红包系统的用户量更大,设计更加复杂,需要重视的点更多,主要包括以下几点。
海量并发请求,秒杀只有一次活动,但红包可能同一时刻有几十万个秒杀活动。
比如 2017 鸡年除夕,微信红包抢红包用户数高达 3.42 亿,收发峰值 76 万/秒,发红包 37.77 亿 个。
红包业务涉及资金交易,所以一定不能出现超卖、少卖的情况。
参与用户越多,并发 DB 请求越大,数据越容易出现事务问题,所以系统得做好事务一致性。
这也是一般秒杀活动的难点所在,而且抢红包系统涉及金钱交易,所以事务级别要求更高,不能出现脏数据。
抢红包功能允许用户在群聊中发送任意个数和金额的红包,群成员可以抢到随机金额的红包,但要保证每个用户的红包金额不小于 0.01 元。
图片
抢红包的详细交互流程如下:
红包表 redpack 的字段如下:
该表用来记录用户发了多少红包,以及需要维护的剩余金额。
红包记录表 redpack_record 如下:
记录表用来存放用户具体抢到的红包信息,也是红包表的副表。
从 2015 年起,微信红包的抢红包和拆红包就分离了,用户点击抢红包后需要进行两次操作。
这也是为什么明明有时候抢到了红包,点开后却发现该红包已经被领取完了。
图片
抢红包的交互步骤如下:
上述流程,在一般的秒杀活动中随处可见,但是,红包系统真的有这么简单吗?
当用户量过大时,高并发下的事务一致性怎么保证,数据分流如何处理,红包的数额分配又是怎么做的,接下来我们一一探讨。
由于是秒杀类设计,以及 money 分发,所以我们重点关注抢红包时的高并发解决方案和红包分配算法。
首先,抢红包系统的用户量很大,如果几千万甚至亿万用户同时在线发抢红包,请求直接打到数据库,必然会导致后端服务过载甚至崩溃。
而在这种业务量下,简单地对数据库进行扩容不仅会让成本消耗剧增,另一方面由于存在磁盘的性能瓶颈,所以大概率解决不了问题。
所以,我们将解决方案集中在 减轻系统压力、提升响应速度 上,接下来会从缓存、加锁、异步分治等方案来探讨可行性。
和大多数秒杀系统设计相似,由于抢红包时并发很高,如果直接操作 DB 里的数据表,可能触发 DB 锁的逻辑,导致响应不及时。
图片
所以,我们可以在 DB 落盘之前加一层缓存,先限制住流量,再处理红包订单的数据更新。
这样做的优点是用缓存操作替代了磁盘操作,提升了并发性能,这在一般的小型秒杀活动中非常有效!
但是,随着微信使用发&抢红包的用户量增多,系统压力增大,各种连锁反应产生后,数据一致性的问题逐渐暴露出来:
而且在几十万的并发下,直接对业务加锁也是不现实的,即便是乐观锁。
在关系型 DB 里,有两种并发控制方法:分为乐观锁(又叫乐观并发控制,Optimistic Concurrency Control,缩写 “OCC”)和悲观锁(又叫悲观并发,Pessimistic Concurrency Control,缩写“PCC”)。
图片
悲观锁在操作数据时比较悲观,认为别的事务可能会同时修改数据,所以每次操作数据时会先把数据锁住,直到操作完成。
乐观锁正好相反,这种策略主打一个“信任”的思想,认为事务之间的数据竞争很小,所以在操作数据时不会加锁,直到所有操作都完成到提交时才去检查是否有事务更新(通常是通过版本号来判断),如果没有则提交,否则进行回滚。
在高并发场景下,由于数据操作的请求很多,所以乐观锁的吞吐量更大一些。但是从业务来看,可能会带来一些额外的问题:
总的来说,乐观锁适用于数据竞争小,冲突较少的业务场景,而悲观锁也不适用于高并发场景的数据更新。
因此对于抢红包系统来说,加锁是非常不适合的。
综上所述,抢红包时不仅要解决高并发问题、还得保障并发的顺序性,所以我们考虑从队列的角度来设计。
我们知道,每次包红包、发红包、抢红包时,也有先后依赖关系,因此我们可以将红包 ID 作为一个唯一 Key,将发一次红包看作一个单独的 set,各个 set 相互独立处理。
图片
这样,我们就把海量的抢红包系统分成一个个的小型秒杀系统,在调度处理中,通过对红包 ID 哈希取模,将一个个请求打到多台服务器上解耦处理。
然后,为了保证每个用户抢红包的先后顺序,我们把一个红包相关的操作串行起来,放到一个队列里面,依次消费。
从上述 set 分流我们可以看出,一台服务器可能会同时处理多个红包的操作,所以,为了保证消费者处理 DB 不被高并发打崩,我们还需要在消费队列时用缓存来限制并发消费数量。
抢红包业务消费时由于不存储数据,只是用缓存来控制并发。所以我们可以选用大数据量下性能更好的 Memcached。
除此之外,在数据存储上,我们可以用红包 ID 进行哈希分表,用时间维度对 DB 进行冷热分离,以此来提升单 set 的处理性能。
综上所述,抢红包系统在解决高并发问题上采用了 set 分治、串行化队列、双维度分库分表 等方案,使得单组 DB 的并发性能得到了有效提升,在应对数亿级用户请求时取得了良好的效果。
抢红包后,我们需要进行拆红包,接下来我们讨论一下红包系统的红包分配算法。
红包金额分配时,由于是随机分配,所以有两种实现方案:实时拆分和预先生成。
实时拆分,指的是在抢红包时实时计算每个红包的金额,以实现红包的拆分过程。
这个对系统性能和拆分算法要求较高,例如拆分过程要一直保证后续待拆分红包的金额不能为空,不容易做到拆分的红包金额服从正态分布规律。
预先生成,指的是在红包开抢之前已经完成了红包的金额拆分,抢红包时只是依次取出拆分好的红包金额。
这种方式对拆分算法要求较低,可以拆分出随机性很好的红包金额,但通常需要结合队列使用。
综合上述优缺点考虑,以及微信群聊中的人数不多(目前最高 500 人),所以我们采用实时拆分的方式,用二倍均值法来生成随机红包,只满足随机即可,不需要正态分布。
故可能出现很大的红包差额,但这更刺激不是吗
本文链接:http://www.28at.com/showinfo-26-46358-0.html听说你会架构设计?来,弄一个红包系统
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com
上一篇: 关于响应式布局,你需要了解的知识点