当前位置:首页 > 科技  > 软件

谷歌KDD'23工作:如何提升推荐系统Ranking模型训练稳定性

来源: 责编: 时间:2023-08-05 11:45:42 5425观看
导读谷歌在KDD 2023发表了一篇工作,探索了推荐系统ranking模型的训练稳定性问题,分析了造成训练稳定性存在问题的潜在原因,以及现有的一些提升模型稳定性方法的不足,并提出了一种新的梯度裁剪方式,提升了ranking模型的训练稳定

谷歌在KDD 2023发表了一篇工作,探索了推荐系统ranking模型的训练稳定性问题,分析了造成训练稳定性存在问题的潜在原因,以及现有的一些提升模型稳定性方法的不足,并提出了一种新的梯度裁剪方式,提升了ranking模型的训练稳定性。下面给大家详细介绍一下这篇文章。QdM28资讯网——每日最新资讯28at.com

1、模型背景

本文以Youtube中的ranking模型为例,进行推荐系统ranking模型训练稳定性的分析。整体模型如下图所示,包括特征输入层、多任务共享层、每个任务私有参数层,整体包括CTR预估、CVR预估等多个任务联合训练。QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

什么样的训练过程是稳定性比较差的呢?如下图所示,model-a的loss和auc曲线被文中称为micro-diverged,即训练过程中出现loss的突增,伴随着auc下降,但是继续训练模型会恢复回来,最终不会影响模型效果。model-b的loss和auc曲线被文中称为fully-diverged,即模型训练过程中出现大幅度的loss增加和auc下降,并且后面也不会再恢复了,对模型的性能影响很大。本文更关注的是后面fully-diverged这种情况。QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

2、影响稳定性的因素

为什么推荐系统中的模型,存在这样的训练稳定性问题呢?训练过程不稳定,本质原因在于模型在优化到一个比较陡峭的超平面时使用了一个较大的学习率,导致模型参数的更新出现严重问题,文中原话是“step size being too large when loss curvature is steep”。在推荐系统的ranking模型中,这种现象更为常见,主要由于以下几个原因:QdM28资讯网——每日最新资讯28at.com

多任务学习:推荐系统中的ranking模型经常采用多任务学习的方式,这导致当一个任务的梯度出现问题时,对共享参数层也会造成很大影响,增加了模型训练不稳定的可能性;QdM28资讯网——每日最新资讯28at.com

Sequential training:ranking模型经常需要进行ODL或者增量更新,以适应线上数据分布的实时变化。这就导致模型的训练数据一直是动态变化的,模型需要不断拟合变化的数据分布,给模型的收敛带来更大的不确定因素;QdM28资讯网——每日最新资讯28at.com

模型尺寸和输入特征:相比其他领域的模型,ranking模型需要更多类型的输入特征,并且目前的趋势是不断增大模型尺寸,这些都可能导致模型的优化超平面变得更加陡峭导致难以收敛。QdM28资讯网——每日最新资讯28at.com

下图展示了在相同的学习率下,loss平面的陡峭程度对于梯度更新的影响,越陡峭的超平面,以一个不适配(较大)的学习率更新会导致loss震荡难以收敛。QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

3、现有方法

为了解决这类训练不稳定问题,业内已经有一些相应的解决方案。例如,针对上述Sequential training需要适配数据分布而带来的不收敛问题,可以采用滑动时间窗口的方式生成训练样本。每次让模型使用滑动窗口内的数据进行训练,通过增大滑动窗口的尺寸,可以让每轮训练的模型见到的数据分布差异没那么大,平滑的更新数据分布,缓解模型需要适配数据分布剧烈变化的问题。QdM28资讯网——每日最新资讯28at.com

不过,从本质原因“step size being too large when loss curvature is steep”来讲,一个治标治本的方法是直接优化梯度更新的过程,对于陡峭的loss超平面使用更小的学习率,使用Hessian矩阵最大特征值计算,也可以近似利用梯度代替。Adagrad和梯度裁剪就是这类方法中的经典工作。Adagrad通过每个参数历史的梯度更新情况进行累计,来调整每个参数的学习率,历史更新较多的参数,学习率设置的更小一些,梯度更新公式如下所示:QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

而梯度裁剪更加直接,如果计算的梯度大于一定的阈值,就将梯度缩小(如下面公式,核心是缩放系数sigmoid的计算,根据阈值和梯度的L2范数比值而来,梯度的L2范数太大就缩小梯度)。QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

如何设计梯度裁剪中的阈值呢?后续的工作Adaptive Gradient Clipping提出了一种自动设计阈值的方式,核心思路是梯度的范数与模型参数范数比值不能太大,因此引入这一项帮助个性化调节不同参数的梯度:QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

4、本文方法

虽然上述梯度裁剪方法有助于提升ranking模型训练稳定性,但是文中发现这类方法对于推荐系统中的ranking模型并不能起到有效作用。经过分析,文中发现,之前的梯度裁剪方法在梯度突然暴增的时候控制力不够。文中提出了Clippy,主要修改的是梯度裁剪中的缩放系数,相比原来的梯度裁剪主要有2个改进点,一方面将L2 norm改成了无穷范数(取各个维度L1最大值),同时对于分子改成了上文adagrad中的r,即历史梯度的累积。QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

这样修改的原因为,如下图所示,在step-b到step-c损失函数突增,梯度对应变大,但是之前的梯度裁剪方法得到的缩放系数并不足以控制梯度。将L2范数改成无穷范数,可以方便捕捉某一个维度上的突变,对某一维度的梯度突增有更强的敏感性。另外,将分子变为累计梯度,让模型根据累计梯度而不是当前梯度调整阈值,更适配Adagrad对模型参数的更新过程。通过这种方式,如下图第二列所示,对梯度的约束更加强烈,可以有效限制梯度过大导致的训练不稳定问题。QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

最后,文中给出了Clippy加入到Adagrad更新的整体算法流程,如下表:QdM28资讯网——每日最新资讯28at.com

图片图片QdM28资讯网——每日最新资讯28at.com

通过下面的实验对比可以发现,使用了Adagrad+Cliipy后,模型的训练过程更加稳定:QdM28资讯网——每日最新资讯28at.com

图片 图片 QdM28资讯网——每日最新资讯28at.com

本文链接:http://www.28at.com/showinfo-26-127-0.html谷歌KDD'23工作:如何提升推荐系统Ranking模型训练稳定性

声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com

上一篇: 如何使用JavaScript创建一只图像放大镜?

下一篇: 多线程开发带来的问题与解决方法

标签:
  • 热门焦点
  • Golang 中的 io 包详解:组合接口

    io.ReadWriter// ReadWriter is the interface that groups the basic Read and Write methods.type ReadWriter interface { Reader Writer}是对Reader和Writer接口的组合,
  • K8S | Service服务发现

    一、背景在微服务架构中,这里以开发环境「Dev」为基础来描述,在K8S集群中通常会开放:路由网关、注册中心、配置中心等相关服务,可以被集群外部访问;图片对于测试「Tes」环境或者
  • 让我们一起聊聊文件的操作

    文件【1】文件是什么?文件是保存数据的地方,是数据源的一种,比如大家经常使用的word文档、txt文件、excel文件、jpg文件...都是文件。文件最主要的作用就是保存数据,它既可以保
  • 阿里大调整

    来源:产品刘有媒体报道称,近期淘宝天猫集团启动了近年来最大的人力制度改革,涉及员工绩效、层级体系等多个核心事项,目前已形成一个初步的“征求意见版”:1、取消P序列
  • 小米汽车电池信息疑似曝光:容量101kWh,支持800V高压快充

    7月14日消息,今日一名博主在社交媒体发布了一张疑似小米汽车电池信息的照片,显示该电池包正是宁德时代麒麟电池,容量为101kWh,电压为726.7V,可以预测小
  • iQOO 11S评测:行业唯一的200W标准版旗舰

    【Techweb评测】去年底,iQOO推出了“电竞旗舰”iQOO 11系列,作为一款性能强机,该机不仅全球首发2K 144Hz E6全感屏,搭载了第二代骁龙8平台及144Hz电竞
  • 2299元起!iQOO Pad开启预售:性能最强天玑平板

    5月23日,iQOO如期举行了新品发布会,除了首发安卓最强旗舰处理器的iQOO Neo8系列新机外,还在发布会上推出了旗下首款平板电脑——iQOO Pad,其搭载了天玑
  • 首发天玑9200+ iQOO Neo8系列发布首销售价2299元起

    2023年5月23日晚,iQOO Neo8系列正式发布。其中,Neo系列首款Pro之作——iQOO Neo8 Pro强悍登场,限时售价3099元起;价位段最强性能手机iQOO Neo8同期上市
  • Windows 11发布,微软一改往常对老机型开放的态度

    距离 Windows 11 发布已经过去一周,在过去一周里,很多数码爱好者围绕其对 Android 应用的支持、对老机型的升级问题展开了激烈讨论。与以往不同的是,在这次大
Top