当前位置:首页 > 科技  > 软件

结合Spring Boot 3.x与机器学习算法优化推荐系统

来源: 责编: 时间:2024-07-09 18:20:28 686观看
导读本专题深入探讨了12306火车购票系统在高峰期遇到的一系列疑难技术问题,特别聚焦于如何借助Spring Boot 3.x的强大功能来优化系统性能、安全性和用户体验。从智能验证码校验,负载均衡与微服务架构,到支付安全加固和个性化

本专题深入探讨了12306火车购票系统在高峰期遇到的一系列疑难技术问题,特别聚焦于如何借助Spring Boot 3.x的强大功能来优化系统性能、安全性和用户体验。从智能验证码校验,负载均衡与微服务架构,到支付安全加固和个性化推荐系统的构建,专题逐一提供了实战案例和示例代码,旨在帮助开发人员在实际工作中快速诊断并解决类似问题。此外,专题还关注了账户安全管理、数据一致性保障等关键领域,为读者提供一套全面而深入的解决方案框架,旨在推动12306购票系统及类似在线服务平台向更高水平的稳定性和用户满意度迈进。3h828资讯网——每日最新资讯28at.com

3h828资讯网——每日最新资讯28at.com

结合Spring Boot 3.x与机器学习算法优化推荐系统

在现代交通系统中,个性化推荐可以极大地提升用户体验。通过分析乘客的历史数据,我们可以为每个用户提供定制化的车票和路线推荐。我们的目标是结合 Spring Boot 3.x 和机器学习算法,优化推荐系统,为用户提供最优出行方案。3h828资讯网——每日最新资讯28at.com

Spring Boot 3.x与机器学习算法结合优化推荐系统

我们会使用 Spring Boot 3.x 作为后端框架,搭建推荐服务。同时,采用机器学习算法对乘客的历史数据进行分析,生成个性化推荐。主要使用以下技术栈:3h828资讯网——每日最新资讯28at.com

  • Spring Boot 3.x
  • Scikit-learn 或 TensorFlow 作为机器学习框架
  • MySQL 或 MongoDB 存储用户历史数据

分析乘客历史数据,提供个性化路线和车票推荐

我们将通过以下几步来优化推荐系统:3h828资讯网——每日最新资讯28at.com

  1. 数据收集和预处理:收集用户的历史出行数据,并进行预处理,去除异常值和噪声。
  2. 机器学习模型训练:使用收集到的历史数据训练推荐算法模型,例如使用协同过滤或基于内容的推荐算法。
  3. 系统集成:将训练好的模型集成到 Spring Boot 应用中,为用户提供实时的推荐服务。

数据收集和预处理

用户的历史数据存储在 MySQL 数据库中,包括用户 ID、出行时间、出行路线等信息。我们要先从数据库中提取这些数据,并进行预处理。3h828资讯网——每日最新资讯28at.com

示例代码:3h828资讯网——每日最新资讯28at.com

import java.sql.Connection;import java.sql.DriverManager;import java.sql.PreparedStatement;import java.sql.ResultSet;import java.util.ArrayList;import java.util.List;public class DataPreprocessing {    private static final String DB_URL = "jdbc:mysql://localhost:3306/ticketdb";    private static final String USER = "username";    private static final String PASS = "password";    public static List<UserData> fetchData() {        List<UserData> dataList = new ArrayList<>();        try (Connection connection = DriverManager.getConnection(DB_URL, USER, PASS)) {            String query = "SELECT user_id, travel_time, travel_route FROM user_history";            PreparedStatement preparedStatement = connection.prepareStatement(query);            ResultSet resultSet = preparedStatement.executeQuery();            while (resultSet.next()) {                dataList.add(new UserData(resultSet.getInt("user_id"), resultSet.getTimestamp("travel_time"), resultSet.getString("travel_route")));            }        } catch (Exception e) {            e.printStackTrace();        }        return dataList;    }}

机器学习模型训练

这里我们使用 Python 的 Scikit-learn 框架训练一个简单的推荐模型。我们先将数据导出到 CSV 文件中,再通过 Python 代码进行训练。3h828资讯网——每日最新资讯28at.com

示例代码(Python):3h828资讯网——每日最新资讯28at.com

import pandas as pdfrom sklearn.model_selection import train_test_splitfrom sklearn.metrics.pairwise import cosine_similarity# 加载数据data = pd.read_csv('user_data.csv')# 数据预处理# 将出行路线转为数值向量routes = pd.get_dummies(data['travel_route'])# 计算用户之间的相似度user_similarity = cosine_similarity(routes)# 根据相似度推荐def recommend(user_id, user_similarity):    similar_users = user_similarity[user_id].argsort()[-5:][::-1]    recommendations = data[data['user_id'].isin(similar_users)]    return recommendations# 示例测试user_id = 1recommendations = recommend(user_id, user_similarity)print(recommendations)

系统集成

将训练好的模型导出为文件,并在 Spring Boot 中加载和使用模型进行实时预测。3h828资讯网——每日最新资讯28at.com

示例代码(Spring Boot):3h828资讯网——每日最新资讯28at.com

import org.springframework.web.bind.annotation.GetMapping;import org.springframework.web.bind.annotation.RequestParam;import org.springframework.web.bind.annotation.RestController;import org.tensorflow.SavedModelBundle;import org.tensorflow.Session;import org.tensorflow.Tensor;@RestControllerpublic class RecommendationController {    private SavedModelBundle model;    public RecommendationController() {        // 加载模型        this.model = SavedModelBundle.load("/path/to/saved/model");    }    @GetMapping("/recommend")    public List<String> recommend(@RequestParam int userId) {        // 获取用户历史数据        List<UserData> userDataList = DataPreprocessing.fetchDataByUserId(userId);        // 构建输入张量        Tensor<String> inputTensor = Tensor.create(userDataList);        // 进行预测        Session session = model.session();        List<Tensor<?>> outputs = session.runner().feed("input", inputTensor).fetch("output").run();        Tensor<String> outputTensor = outputs.get(0).expect(String.class);                // 解析结果        List<String> recommendations = new ArrayList<>();        try (outputTensor) {            recommendations = outputTensor.copyTo(new String[1])[0];        }        return recommendations;    }}

注意事项

保障推荐系统的准确性

  1. 数据质量: 确保历史数据的准确性和完整性,不要包含过多的异常值和噪声。
  2. 模型选择: 选择合适的机器学习模型,不断优化模型参数,提升推荐的准确性。

注意用户隐私保护

  1. 数据加密: 对用户数据进行加密传输和存储,防止数据泄露。
  2. 数据匿名化: 在数据分析过程中,尽量使用匿名化处理的数据,保护用户隐私。

总结

本文介绍了结合 Spring Boot 3.x 和机器学习算法来优化推荐系统。通过数据收集和预处理、机器学习模型训练、系统集成等步骤,实现了对车票和路线的个性化推荐。同时强调了推荐系统的准确性和用户隐私保护。希望帮助大家理解并实现更高效、更智能的推荐系统。3h828资讯网——每日最新资讯28at.com

3h828资讯网——每日最新资讯28at.com

本文链接:http://www.28at.com/showinfo-26-99901-0.html结合Spring Boot 3.x与机器学习算法优化推荐系统

声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com

上一篇: 软件架构中的九种耦合形式

下一篇: 五分钟挑战:Python while 循环的七种高效玩法!

标签:
  • 热门焦点
  • 官方承诺:K60至尊版将会首批升级MIUI 15

    官方承诺:K60至尊版将会首批升级MIUI 15

    全新的MIUI 15今天也有了消息,在官宣了K60至尊版将会搭载天玑9200+处理器和独显芯片X7的同时,Redmi给出了官方承诺,K60至尊重大更新首批升级,会首批推送MIUI 15。也就是说虽然
  • 直屏旗舰来了 iQOO 12和K70 Pro同台竞技

    直屏旗舰来了 iQOO 12和K70 Pro同台竞技

    旗舰机基本上使用的都是双曲面屏幕,这就让很多喜欢直屏的爱好者在苦等一款直屏旗舰,这次,你们等到了。据博主数码闲聊站带来的最新爆料称,Redmi下代旗舰K70 Pro和iQOO 12两款手
  • 7月安卓手机性价比榜:努比亚+红魔两款新机入榜

    7月安卓手机性价比榜:努比亚+红魔两款新机入榜

    7月登场的新机有努比亚Z50S Pro和红魔8S Pro,除了三星之外目前唯二的两款搭载超频版骁龙8Gen2处理器的产品,而且努比亚和红魔也一贯有着不错的性价比,所以在本次的性价比榜单
  • 分布式系统中的CAP理论,面试必问,你理解了嘛?

    分布式系统中的CAP理论,面试必问,你理解了嘛?

    对于刚刚接触分布式系统的小伙伴们来说,一提起分布式系统,就感觉高大上,深不可测。而且看了很多书和视频还是一脸懵逼。这篇文章主要使用大白话的方式,带你理解一下分布式系统
  • 一篇聊聊Go错误封装机制

    一篇聊聊Go错误封装机制

    %w 是用于错误包装(Error Wrapping)的格式化动词。它是用于 fmt.Errorf 和 fmt.Sprintf 函数中的一个特殊格式化动词,用于将一个错误(或其他可打印的值)包装在一个新的错误中。使
  • Java NIO内存映射文件:提高文件读写效率的优秀实践!

    Java NIO内存映射文件:提高文件读写效率的优秀实践!

    Java的NIO库提供了内存映射文件的支持,它可以将文件映射到内存中,从而可以更快地读取和写入文件数据。本文将对Java内存映射文件进行详细的介绍和演示。内存映射文件概述内存
  • 之家push系统迭代之路

    之家push系统迭代之路

    前言在这个信息爆炸的互联网时代,能够及时准确获取信息是当今社会要解决的关键问题之一。随着之家用户体量和内容规模的不断增大,传统的靠"主动拉"获取信息的方式已不能满足用
  • 得物宠物生意「狂飙」,发力“它经济”

    得物宠物生意「狂飙」,发力“它经济”

    作者|花花小萌主近日,得物宣布正式上线宠物鉴别,通过得物App内的&ldquo;在线鉴别&rdquo;,可找到鉴别宠物的选项。通过上传自家宠物的部位细节,就能收获拥有专业资质认证的得物鉴
  • 2299元起!iQOO Pad明晚首销:性能最强天玑平板

    2299元起!iQOO Pad明晚首销:性能最强天玑平板

    5月23日,iQOO如期举行了新品发布会,除了首发安卓最强旗舰处理器的iQOO Neo8系列新机外,还在发布会上推出了旗下首款平板电脑——iQOO Pad,其最大的卖点
Top