当前位置:首页 > 科技  > 软件

一个超强 Pytorch 操作!!

来源: 责编: 时间:2024-01-02 09:30:10 140观看
导读哈喽,我是小壮!这几天关于深度学习的内容,已经分享了一些。另外,类似于numpy、pandas常用数据处理函数,在Pytorch中也是同样的重要,同样的有趣!!Pytorch同样提供了许多用于数据处理和转换的函数。今儿来看下,最重要的几个必会

哈喽,我是小壮!siR28资讯网——每日最新资讯28at.com

这几天关于深度学习的内容,已经分享了一些。siR28资讯网——每日最新资讯28at.com

另外,类似于numpy、pandas常用数据处理函数,在Pytorch中也是同样的重要,同样的有趣!!siR28资讯网——每日最新资讯28at.com

Pytorch同样提供了许多用于数据处理和转换的函数。siR28资讯网——每日最新资讯28at.com

今儿来看下,最重要的几个必会函数。siR28资讯网——每日最新资讯28at.com

siR28资讯网——每日最新资讯28at.com

torch.Tensor

torch.Tensor 是PyTorch中最基本的数据结构,用于表示张量(tensor)。张量是多维数组,可以包含数字、布尔值等。你可以使用torch.Tensor的构造函数创建张量,也可以通过其他函数创建。siR28资讯网——每日最新资讯28at.com

import torch# 创建一个空的张量empty_tensor = torch.Tensor()# 从列表创建张量data = [1, 2, 3, 4]tensor_from_list = torch.Tensor(data)

torch.from_numpy

用于将NumPy数组转换为PyTorch张量。siR28资讯网——每日最新资讯28at.com

import numpy as npnumpy_array = np.array([1, 2, 3, 4])torch_tensor = torch.from_numpy(numpy_array)

torch.Tensor.item

用于从只包含一个元素的张量中提取Python数值。适用于标量张量。siR28资讯网——每日最新资讯28at.com

scalar_tensor = torch.tensor(5)scalar_value = scalar_tensor.item()

torch.Tensor.view

用于改变张量的形状。siR28资讯网——每日最新资讯28at.com

original_tensor = torch.randn(2, 3)  # 2x3的随机张量reshaped_tensor = original_tensor.view(3, 2)  # 将形状改变为3x2

torch.Tensor.to

用于将张量转换到指定的设备(如CPU或GPU)。siR28资讯网——每日最新资讯28at.com

cpu_tensor = torch.randn(3)gpu_tensor = cpu_tensor.to("cuda")  # 将张量移动到GPU

torch.Tensor.numpy

将张量转换为NumPy数组。siR28资讯网——每日最新资讯28at.com

pytorch_tensor = torch.tensor([1, 2, 3])numpy_array = pytorch_tensor.numpy()

torch.nn.functional.one_hot

用于对整数张量进行独热编码。siR28资讯网——每日最新资讯28at.com

import torch.nn.functional as Finteger_tensor = torch.tensor([0, 2, 1])one_hot_encoded = F.one_hot(integer_tensor)

torch.utils.data.Dataset和torch.utils.data.DataLoader

用于加载和处理数据集。这两个类通常与自定义的数据集类一起使用。siR28资讯网——每日最新资讯28at.com

from torch.utils.data import Dataset, DataLoaderclass CustomDataset(Dataset):    def __init__(self, data):        self.data = data        def __len__(self):        return len(self.data)        def __getitem__(self, index):        return self.data[index]dataset = CustomDataset([1, 2, 3, 4, 5])dataloader = DataLoader(dataset, batch_size=2, shuffle=True)

以上这些是PyTorch中一些重要的数据转换函数,进行了简单的使用。siR28资讯网——每日最新资讯28at.com

它们对于处理和准备深度学习任务中的数据非常非常有帮助。siR28资讯网——每日最新资讯28at.com

一个案例

接下来,我们制作一个图像分割的案例。siR28资讯网——每日最新资讯28at.com

在这个案例中,我们将使用PyTorch和torchvision库进行图像分割,使用预训练的DeepLabV3模型和PASCAL VOC数据集。siR28资讯网——每日最新资讯28at.com

在整个的代码中,涉及到上面所学到的内容,调整大小、裁剪、标准化等。siR28资讯网——每日最新资讯28at.com

import torchimport torchvision.transforms as transformsfrom torchvision import modelsfrom PIL import Imageimport matplotlib.pyplot as plt# 下载示例图像!wget -O example_image.jpg https://pytorch.org/assets/deeplab/deeplab1.jpg# 定义图像转换transform = transforms.Compose([    transforms.Resize((256, 256)),  # 调整大小    transforms.ToTensor(),           # 转换为张量    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])  # 标准化])# 加载并转换图像image_path = 'example_image.jpg'image = Image.open(image_path).convert("RGB")input_tensor = transform(image).unsqueeze(0)  # 添加批次维度# 加载预训练的DeepLabV3模型model = models.segmentation.deeplabv3_resnet101(pretrained=True)model.eval()# 进行图像分割with torch.no_grad():    output = model(input_tensor)['out'][0]    output_predictions = output.argmax(0)# 将预测结果转换为彩色图像def decode_segmap(image, nc=21):    label_colors = np.array([(0, 0, 0),  # 0: 背景                             (128, 0, 0), (0, 128, 0), (128, 128, 0), (0, 0, 128), (128, 0, 128),  # 1-5: 物体                             (0, 128, 128), (128, 128, 128), (64, 0, 0), (192, 0, 0),  # 6-9: 道路                             (64, 128, 0), (192, 128, 0), (64, 0, 128), (192, 0, 128),  # 10-13: 面部                             (64, 128, 128), (192, 128, 128), (0, 64, 0), (128, 64, 0),  # 14-17: 植物                             (0, 192, 0), (128, 192, 0), (0, 64, 128)])  # 18-20: 建筑    r = np.zeros_like(image).astype(np.uint8)    g = np.zeros_like(image).astype(np.uint8)    b = np.zeros_like(image).astype(np.uint8)    for l in range(0, nc):        idx = image == l        r[idx] = label_colors[l, 0]        g[idx] = label_colors[l, 1]        b[idx] = label_colors[l, 2]    rgb = np.stack([r, g, b], axis=2)    return rgb# 将预测结果转换为彩色图像output_rgb = decode_segmap(output_predictions.numpy())# 可视化原始图像和分割结果plt.figure(figsize=(12, 6))plt.subplot(1, 2, 1)plt.imshow(image)plt.title('Original Image')plt.subplot(1, 2, 2)plt.imshow(output_rgb)plt.title('Segmentation Result')plt.show()

在这个案例中,我们首先定义了一系列图像转换函数,包括调整大小、转换为张量和标准化。这些转换确保输入图像满足模型的需求。siR28资讯网——每日最新资讯28at.com

然后,加载了一个示例图像并应用了这些转换。siR28资讯网——每日最新资讯28at.com

接下来,我们使用了torchvision中预训练的DeepLabV3模型来进行图像分割。对于输出,我们提取了预测结果的最大值索引,以获得每个像素的预测类别。siR28资讯网——每日最新资讯28at.com

最后,我们将预测结果转换为彩色图像,并可视化原始图像和分割结果。siR28资讯网——每日最新资讯28at.com

siR28资讯网——每日最新资讯28at.com

这个案例强调了图像转换函数在图像分割任务中的重要作用,确保输入图像符合模型的输入要求,并且输出结果易于可视化。siR28资讯网——每日最新资讯28at.com

本文链接:http://www.28at.com/showinfo-26-55080-0.html一个超强 Pytorch 操作!!

声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com

上一篇: [备忘录]Markdown最常用的20个语法

下一篇: 在Go中使用Goroutines和Channels发送电子邮件

标签:
  • 热门焦点
Top