在实际的工作中,我们通常会使用多级缓存机制,将本地缓存和分布式缓存结合起来,从而提高系统性能和响应速度。本文通过springboot整合ehcache和redis实现多级缓存案例实战,从源码角度分析下多级缓存实现原理。
pom依赖(注意引入cache和ehcache组件依赖)。
<?xml versinotallow="1.0" encoding="UTF-8"?><project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/xsd/maven-4.0.0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>org.example</groupId> <artifactId>cache-demo</artifactId> <version>1.0-SNAPSHOT</version> <properties> <maven.compiler.source>8</maven.compiler.source> <maven.compiler.target>8</maven.compiler.target> </properties> <parent> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-parent</artifactId> <version>2.5.0</version> </parent> <dependencies> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-web</artifactId> </dependency> <dependency> <groupId>junit</groupId> <artifactId>junit</artifactId> <version>4.12</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-test</artifactId> <scope>test</scope> </dependency> <dependency> <groupId>com.baomidou</groupId> <artifactId>mybatis-plus-boot-starter</artifactId> <version>3.4.3</version> </dependency> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>druid-spring-boot-starter</artifactId> <version>1.2.1</version> </dependency> <dependency> <groupId>org.projectlombok</groupId> <artifactId>lombok</artifactId> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>fastjson</artifactId> <version>1.2.76</version> </dependency> <dependency> <groupId>com.alibaba</groupId> <artifactId>druid</artifactId> <version>1.1.23</version> </dependency> <dependency> <groupId>com.google.guava</groupId> <artifactId>guava</artifactId> <version>23.0</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-data-redis</artifactId> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-cache</artifactId> </dependency> <dependency> <groupId>net.sf.ehcache</groupId> <artifactId>ehcache</artifactId> <version>2.10.8</version> </dependency> <dependency> <groupId>org.springframework.boot</groupId> <artifactId>spring-boot-starter-aop</artifactId> </dependency> </dependencies></project>
application.properties(启动类加上:@EnableCaching注解)。
server.port = 7001spring.application.name = cache-demo#log configlogging.config = classpath:log/logback.xmldebug = false#mp configmybatis-plus.mapper-locations = classpath*:mapper/*.xmlmybatis-plus.configuration.log-impl = org.apache.ibatis.logging.stdout.StdOutImplspring.datasource.type = com.alibaba.druid.pool.DruidDataSourcespring.datasource.druid.driver-class-name = com.mysql.cj.jdbc.Driverspring.datasource.url = jdbc:mysql://localhost:3306/数据库?characterEncoding=utf-8spring.datasource.username = 数据库账号spring.datasource.password = 数据库密码#redis configspring.redis.host = redis主机spring.redis.port = 6379spring.redis.password=redis密码,没有就删掉该配置# ehcache configspring.cache.type = ehcachespring.cache.ehcache.config = classpath:ehcache.xml
ehcache.xml。
<?xml version="1.0" encoding="UTF-8"?><ehcache xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="http://ehcache.org/ehcache.xsd" updateCheck="false"> <diskStore path="D:/ehcache"/> <!--默认缓存策略 --> <!-- external:是否永久存在,设置为true则不会被清除,此时与timeout冲突,通常设置为false--> <!-- diskPersistent:是否启用磁盘持久化--> <!-- maxElementsInMemory:最大缓存数量--> <!-- overflowToDisk:超过最大缓存数量是否持久化到磁盘--> <!-- timeToIdleSeconds:最大不活动间隔,设置过长缓存容易溢出,设置过短无效果,单位:秒--> <!-- timeToLiveSeconds:最大存活时间,单位:秒--> <!-- memoryStoreEvictionPolicy:缓存清除策略--> <defaultCache eternal="false" diskPersistent="false" maxElementsInMemory="1000" overflowToDisk="false" timeToIdleSeconds="60" timeToLiveSeconds="60" memoryStoreEvictionPolicy="LRU"/> <cache name="studentCache" eternal="false" diskPersistent="false" maxElementsInMemory="1000" overflowToDisk="false" timeToIdleSeconds="100" timeToLiveSeconds="100" memoryStoreEvictionPolicy="LRU"/></ehcache>
MybatisPlusConfig类(注意:@MapperScan注解,也可加在启动类上)。
@Configuration@MapperScan("com.cache.demo.mapper")public class MybatisPlusConfig { @Bean public MybatisPlusInterceptor mybatisPlusInterceptor() { //分页插件 MybatisPlusInterceptor mybatisPlusInterceptor = new MybatisPlusInterceptor(); mybatisPlusInterceptor.addInnerInterceptor(new PaginationInnerInterceptor()); return mybatisPlusInterceptor; }}
测试demo。
这里可以将一级缓存、二级缓存时效设置短一些,方便进行测试。
@Slf4j@RestController@RequestMapping("/cache")public class CacheController { @Resource private StudentMapper studentMapper; @Autowired private StringRedisTemplate stringRedisTemplate; // 添加缓存注解(一级缓存:ehcache) @Cacheable(value = "studentCache", key = "#id+'getStudentById'") @GetMapping("/getStudentById") public String getStudentById(Integer id) { String key = "student:" + id; // 一级缓存中不存在,则从二级缓存:redis中查找 String studentRedis = stringRedisTemplate.opsForValue().get(key); if (StringUtils.isNotBlank(studentRedis)) { return JSON.toJSONString(JSON.parseObject(studentRedis, Student.class)); } // 二级缓存中不存在则查询数据库,并更新二级缓存、一级缓存 Student student = studentMapper.selectStudentById(id); if (null != student) { stringRedisTemplate.opsForValue().set(key, JSON.toJSONString(student)); } return JSON.toJSONString(student); }}
启动类上的:@EnableCaching注解。
@Target(ElementType.TYPE)@Retention(RetentionPolicy.RUNTIME)@Documented@Import(CachingConfigurationSelector.class)public @interface EnableCaching { boolean proxyTargetClass() default false; AdviceMode mode() default AdviceMode.PROXY; int order() default Ordered.LOWEST_PRECEDENCE;}
导入的:CachingConfigurationSelector类:
public class CachingConfigurationSelector extends AdviceModeImportSelector<EnableCaching> { @Override public String[] selectImports(AdviceMode adviceMode) { switch (adviceMode) { case PROXY: // 此处走的是:PROXY return getProxyImports(); case ASPECTJ: return getAspectJImports(); default: return null; } } private String[] getProxyImports() { List<String> result = new ArrayList<>(3); // 导入了AutoProxyRegistrar类和ProxyCachingConfiguration类 result.add(AutoProxyRegistrar.class.getName()); result.add(ProxyCachingConfiguration.class.getName()); if (jsr107Present && jcacheImplPresent) { result.add(PROXY_JCACHE_CONFIGURATION_CLASS); } return StringUtils.toStringArray(result); }}
AutoProxyRegistrar类(代码有所简化):
public class AutoProxyRegistrar implements ImportBeanDefinitionRegistrar { private final Log logger = LogFactory.getLog(getClass()); @Override public void registerBeanDefinitions(AnnotationMetadata importingClassMetadata, BeanDefinitionRegistry registry) { // 最终注册了:InfrastructureAdvisorAutoProxyCreator(BeanPostProcessor接口实现类) // 通过重写postProcessAfterInitialization接口创建代理对象 AopConfigUtils.registerAutoProxyCreatorIfNecessary(registry); }}@Nullable public static BeanDefinition registerAutoProxyCreatorIfNecessary(BeanDefinitionRegistry registry, @Nullable Object source) { return registerOrEscalateApcAsRequired(InfrastructureAdvisorAutoProxyCreator.class, registry, source); }
导入的第一个类看完了,接着看导入的第二个类:ProxyCachingConfiguration。
@Configuration(proxyBeanMethods = false)@Role(BeanDefinition.ROLE_INFRASTRUCTURE)public class ProxyCachingConfiguration extends AbstractCachingConfiguration { @Bean(name = CacheManagementConfigUtils.CACHE_ADVISOR_BEAN_NAME) @Role(BeanDefinition.ROLE_INFRASTRUCTURE) public BeanFactoryCacheOperationSourceAdvisor cacheAdvisor(CacheOperationSource cacheOperationSource, CacheInterceptor cacheInterceptor) { // 构建BeanFactoryCacheOperationSourceAdvisor BeanFactoryCacheOperationSourceAdvisor advisor = new BeanFactoryCacheOperationSourceAdvisor(); // 设置缓存注解解析器 advisor.setCacheOperationSource(cacheOperationSource); // 设置缓存拦截器:cacheInterceptor advisor.setAdvice(cacheInterceptor); if (this.enableCaching != null) { advisor.setOrder(this.enableCaching.<Integer>getNumber("order")); } return advisor; } @Bean @Role(BeanDefinition.ROLE_INFRASTRUCTURE) public CacheOperationSource cacheOperationSource() { // 缓存注解解析器 return new AnnotationCacheOperationSource(); } @Bean @Role(BeanDefinition.ROLE_INFRASTRUCTURE) public CacheInterceptor cacheInterceptor(CacheOperationSource cacheOperationSource) { // 缓存拦截器 CacheInterceptor interceptor = new CacheInterceptor(); interceptor.configure(this.errorHandler, this.keyGenerator, this.cacheResolver, this.cacheManager); interceptor.setCacheOperationSource(cacheOperationSource); return interceptor; }}
继续看下CacheInterceptor类(重要):
public class CacheInterceptor extends CacheAspectSupport implements MethodInterceptor, Serializable { @Override @Nullable public Object invoke(final MethodInvocation invocation) throws Throwable { Method method = invocation.getMethod(); CacheOperationInvoker aopAllianceInvoker = () -> { try { return invocation.proceed(); } catch (Throwable ex) { throw new CacheOperationInvoker.ThrowableWrapper(ex); } }; Object target = invocation.getThis(); Assert.state(target != null, "Target must not be null"); try { // 缓存执行逻辑 return execute(aopAllianceInvoker, target, method, invocation.getArguments()); } catch (CacheOperationInvoker.ThrowableWrapper th) { throw th.getOriginal(); } }}@Nullable protected Object execute(CacheOperationInvoker invoker, Object target, Method method, Object[] args) { if (this.initialized) { Class<?> targetClass = getTargetClass(target); CacheOperationSource cacheOperationSource = getCacheOperationSource(); if (cacheOperationSource != null) { // 解析缓存相关注解,返回CacheOperation // 每个缓存注解对应一种不同的解析处理操作 // CacheEvictOperation、CachePutOperation、CacheableOperation等 Collection<CacheOperation> operations = cacheOperationSource.getCacheOperations(method, targetClass); if (!CollectionUtils.isEmpty(operations)) { // 执行缓存逻辑 return execute(invoker, method, new CacheOperationContexts(operations, method, args, target, targetClass)); } } } return invoker.invoke(); }private Object execute(final CacheOperationInvoker invoker, Method method, CacheOperationContexts contexts) { // 解析处理@CacheEvict注解 processCacheEvicts(contexts.get(CacheEvictOperation.class), true, CacheOperationExpressionEvaluator.NO_RESULT); // 解析处理@Cacheable注解 Cache.ValueWrapper cacheHit = findCachedItem(contexts.get(CacheableOperation.class)); List<CachePutRequest> cachePutRequests = new ArrayList<>(); if (cacheHit == null) { collectPutRequests(contexts.get(CacheableOperation.class), CacheOperationExpressionEvaluator.NO_RESULT, cachePutRequests); } Object cacheValue; Object returnValue; if (cacheHit != null && !hasCachePut(contexts)) { // 命中缓存,则从缓存中获取数据 cacheValue = cacheHit.get(); returnValue = wrapCacheValue(method, cacheValue); } else { // 未命中缓存,则通过反射执行目标方法 returnValue = invokeOperation(invoker); cacheValue = unwrapReturnValue(returnValue); } // 解析处理@CachePut注解 collectPutRequests(contexts.get(CachePutOperation.class), cacheValue, cachePutRequests); // 未命中缓存时,会封装一个cachePutRequests // 然后通过反射执行目标方法后,执行该方法,最终调用EhCacheCache.put方法将数据写入缓存中 for (CachePutRequest cachePutRequest : cachePutRequests) { cachePutRequest.apply(cacheValue); } // 解析处理@CacheEvict注解,和上面的方法相同,只不过第二个参数不同 processCacheEvicts(contexts.get(CacheEvictOperation.class), false, cacheValue); return returnValue; }
接着看下findCachedItem方法。
private Cache.ValueWrapper findCachedItem(Collection<CacheOperationContext> contexts) { Object result = CacheOperationExpressionEvaluator.NO_RESULT; for (CacheOperationContext context : contexts) { if (isConditionPassing(context, result)) { // 生成key策略:解析@Cacheable注解中的key属性 // 若未配置则默认使用SimpleKeyGenerator#generateKey方法生成key Object key = generateKey(context, result); Cache.ValueWrapper cached = findInCaches(context, key); if (cached != null) { return cached; } else { if (logger.isTraceEnabled()) { logger.trace("No cache entry for key '" + key + "' in cache(s) " + context.getCacheNames()); } } } } return null; }// SimpleKeyGenerator#generateKeypublic static Object generateKey(Object... params) { // 方法没有参数,则返回空的SimpleKey if (params.length == 0) { return SimpleKey.EMPTY; } // 方法参数只有一个,则返回该参数 if (params.length == 1) { Object param = params[0]; if (param != null && !param.getClass().isArray()) { return param; } } // 否则将方法参数进行封装,返回SimpleKey return new SimpleKey(params); }private Cache.ValueWrapper findInCaches(CacheOperationContext context, Object key) { for (Cache cache : context.getCaches()) { // 从一级缓存中获取数据 Cache.ValueWrapper wrapper = doGet(cache, key); if (wrapper != null) { if (logger.isTraceEnabled()) { logger.trace("Cache entry for key '" + key + "' found in cache '" + cache.getName() + "'"); } return wrapper; } } return null; }protected Cache.ValueWrapper doGet(Cache cache, Object key) { try { // 这里我们使用的是:EhCacheCache,所以最终会调用EhCacheCache.get方法获取缓存中的数据 return cache.get(key); } catch (RuntimeException ex) { getErrorHandler().handleCacheGetError(ex, cache, key); return null; } }
@EnableCaching和@Transactional等实现逻辑大体相同,看的多了,则一通百通。
本文链接:http://www.28at.com/showinfo-26-13288-0.htmlSpringboot整合Ehcache和Redis实现多级缓存实战案例
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com
上一篇: 分享10+可视图表库, 助你轻松制作精美可视化大屏
下一篇: 四款.NET开源的Redis客户端驱动库