Kafka 作为流处理平台,在实时流计算和在线业务场景,追尾读追求端到端低延迟。在离线批处理和削峰填谷场景,数据冷读追求高吞吐。两个场景都需要很好的数据缓存设计来支撑,Apache Kafka 的数据存储在本地文件,通过 mmap 将文件映射到内存中访问,天然就可以依托操作系统来完成文件的缓冲持久化、缓存加载和缓存驱逐。
AutoMQ 采用存算分离的架构,将存储分离至对象存储,本地没有数据文件,因此无法像 Apache Kafka 一样直接使用数据文件 mmap 来进行数据缓存。这时候通常缓存对象存储的数据有两种做法:
为了降低运维的复杂性和持有成本,提高缓存的效率,AutoMQ 最终选择的是第二种做法:“直接基于内存来进行数据缓存”。
直接基于内存来进行数据缓存,AutoMQ 针对追尾读和冷读两个场景,根据两者的数据访问特点,设计了两套缓存机制:LogCache 和 BlockCache。
图片
LogCache 针对于追尾读场景设计,数据上传到对象存储的同时,也会以单个 RecordBatch 的形式在 LogCache 中缓存一份,这样热数据就可以从直接缓存中获取,提供极低的端到端延迟。相比操作系统通用的缓存设计,LogCache 还具备以下两个特质:
BlockCache 针对冷读场景设计,当无法在 LogCache 中访问到需要的数据时,则从 BlockCache 中读取。BlockCache 相比 LogCache 具备以下两个不同点:
Java 程序中在内存中缓存数据可以选择堆内内存或堆外内存。为了减轻 JVM GC 的负担,AutoMQ 使用堆外内存 Direct Memory 来缓存数据,并且为了提高 Direct Memory 的申请效率,采用业界成熟的 Netty PooledByteBufAllocator 从池化内存中进行内存的申请和释放。
期望是使用 Netty 的 PooledByteBufAllocator 后,AutoMQ 既可以通过池化来获得高效的内存分配速度,又有久经打磨的内存分配策略来最小化内存分配的 Overhead,就可以高枕无忧无忧了,然而在 AutoMQ 1.0.0 RC 压测过程中被现实给了当头一棒。
AutoMQ 生产机型为 2C16G,设置堆外内存使用上限 6GiB -XX:MaxDirectMemorySize=6G,内存分配为 2GiB LogCache + 1GiB BlockCache + 1GiB 其他小项 ~= 4GiB < 6GiB。理论计算下,堆外内存还绰绰有余,然而在实际 AutoMQ 1.0.0 RC 版在各种不同负载下长时间运行后发现,分配内存有 OOM OutOfMemoryError 异常抛出。
本着优先怀疑自己而不是怀疑成熟的类库和操作系统的原则。
观测到异常后,首先怀疑的是代码中哪里有遗漏调用 ByteBuf#release。于是调整 Netty 的泄漏检测等级 -Dio.netty.leakDetection.level=PARANOID,检测每个的 ByteBuf 是否有存在被 GC 但是还没有被释放的问题。跑了一段时间未发现有 Leak 日志,于是乎排除漏释放的可能。
接着怀疑点转移到是否代码中有哪块内存分配量超出了预期值。Netty 的 ByteBufAllocatorMetric只提供全局的内存占用统计,传统的内存分配火焰图也只能提供特定时间的内存申请量,而我们需要的是某个时刻各种类型的内存使用量。因此 AutoMQ 将 ByteBuf 的申请收口到自己实现的 ByteBufAlloc工厂类中,通过WrappedByteBuf 跟踪各种类型内存的申请和释放,以此来记录当前时刻各个类型的内存使用量。并且将 Netty 的实际内存使用量也记录下来,这样就知道 AutoMQ 总体内存和分类内存的使用量。
Buffer usage: ByteBufAllocMetric{allocatorMetric=PooledByteBufAllocatorMetric(usedDirectMemory: 2294284288; ...), // Physical Memory Size Allocated by NettyallocatedMemory=1870424720, // Total Memory Size Requested By AutoMQ1/write_record=1841299456, 11/block_cache=0, ..., // Detail Memory Size Requested By AutoMQpooled=true, direct=true} (com.automq.stream.s3.ByteBufAlloc)
加上分类内存统计后,发现各种类型的内存使用量都在预期范围内。不过异常的是,AutoMQ 申请的内存量和 Netty 实际申请的内存量有较大的差距,并且随着运行两者之间的差值越来越大,甚至有时候 Netty 实际升级的内存是 AutoMQ 申请的内存量的两倍,这个差值为内存分配的内存碎片。
最终 OOM 的诱发原因定位为 Netty PooledByteBufAllocator 的内存碎片。初步定位了问题的原因,那么问题转换为 Netty 为什么会有内存碎片和 AutoMQ 如何规避内存碎片问题。
首先我们来探索一下 Netty 内存碎片的原因。Netty 的内存碎片分为内部碎片和外部碎片:
内部碎片和外部碎片,在不同的 Netty 版本有不同的表现,下面将以 Netty 4.1.52 版本为分割线简要介绍一下 Buddy 分配算法和 PageRun/PoolSubPage 分配算法的工作机制和内存碎片成因。
Netty < 4.1.52 采用 Buddy 分配算法,算法源自 jemalloc3。Netty 为了提升内存申请的效率,会一次性从操作系统申请一段连续内存(PoolChunk),在上层申请 ByteBuf 时,按需将这一段内存逻辑拆分返回给上层。默认 PoolChunk 的大小为 16MB,PoolChunk 逻辑上被划分为 2048 个 8KB 大小的 Page,通过一个完全二叉树来表示内存的使用情况。
图片
完全二叉树的每个节点用一个 byte 来表示节点的状态(memoryMap):
内存分配分为 Tiny [0, 512byte] 、 Small (512byte, 8KB) 、 Normal [8KB, 16M] 和 Huge (16M, Max) 四种类型,其中 Tiny 和 Small 由 PoolSubpage 负责,Normal 由 PoolChunk 负责,Huge 直接分配。
先来看看小内存块的分配效率,Tiny [0, 512byte] 和 Small (512byte, 8KB) 将一个 Page 通过 PoolSubpage 切分成等长的逻辑块,由一个 bitmap 来标记块的使用情况:
再来看看中等的内存块 Normal [8KB, 16M],假设从一个完全空闲的 PoolChunk 申请 2MB + 1KB = 2049KB 内存:
从分配结果可以看出,申请 2049KB 内存,实际标记占用 4MB 内存,意味着内部碎片率为 49.9%。
假设再申请一个 9MB 的内存,虽然刚才的 PoolChunk 仍有 12MB 的剩余空间,但是由于 Buddy 内存分配算法的原理,index=1 已经被占用了部分,此时只能新开一个 PoolChunk 来分配 9MB 的内存。分配后的外部碎片率为 1 - (4MB + 9MB) / 32MB = 59.3%。最终所需内存 / 底层实际占用内存 = 有效内存利用率 = 仅为 34.3%。
更进一步,在各种不同大小的内存块持续的分配释放场景,即使 PoolChunk 实际分配出去的空间不大,也有可能被零散的内存块逻辑分割,进一步增加更多的外部内存碎片。以下图为例,虽然上层应用最终只保留了 4 * 8KB,但是已经无法再从这个 PoolChunk 申请 4MB 的内存了。
图片
Netty >= 4.1.52 参考 jemalloc4 将内存分配升级到 PageRun/PoolSubPage 分配策略。相比原来的 Buddy 分配算法无论在小内存的分配还是在大内存的分配都有低的内部 & 外部内存碎片率。
PageRun/PoolSubpage 分配算法相比原来 Buddy 分配算法:
图片
首先仍旧是先看看小内存块的分配效率,以申请 1025 byte 为例:
sizeIdx2sizeTab=[16, 32, 48, 64, 80, 96, 112, 128, 160, 192, 224, 256, 320, 384, 448, 512, 640, 768, 896, 1024, 1280, 1536, 1792, 2048, 2560, 3072, 3584, 4096, 5120, 6144, 7168, 8192, 10240, 12288, 14336, 16384, 20480, 24576, 28672, ...]
得益于 PoolSubpage 相比原来分级更加精细,从原来的 2 级变成 38 级,小内存块的分配效率大大提高。
然后再来看看中等的内存块 Normal (28KB, 4M] 的内存分配效率。假设从一个完全空闲的 PoolChunk 申请 2MB + 1KB = 2049KB 内存:
通过 PageRun 机制,Netty 可以控制大于 28KB 的内存块分配的内存浪费不超过 8KB,内部碎片率小于 22.2%。
假设再申请一个 1MB 的内存,这时候 PoolChunk 仍旧运行相同的逻辑将 Run{offset=257, size=255} 拆分成 Run{offset=257, size=128} 和 Run{offset=385, size=127},前者返回给上层,后者加入到空闲 Run 列表。此时外部碎片率为 25%。如果按照老的 Buddy 算法,在 PoolChunk 的大小为 4MB 的场景下,就需要新开一个 PoolChunk 了,外部碎片率为 62.5%。
虽然 PageRun/PoolSubpage 分配算法在大小内存上相比原有的 Buddy 分配算法有更低的内部内存碎片率和外部内存碎片率,但是毕竟不像 JVM 内通过 GC 来 Compact 零散的内存,仍旧会出现在各种不同大小的内存块持续的分配释放场景,将 PoolChunk 中的可用 Run 切分很零碎,内存碎片率逐渐提升最终导致 OOM。
前面介绍完 Netty 内存分配的机制和内存碎片产生的场景,那 AutoMQ 能怎么解决内存碎片问题的呢?
LogCache 针对追尾读持续访问新数据的特点,采用先入先出的缓存驱逐策略,换个角度思考就是在相邻时间分配内存的会在相邻时间释放。AutoMQ 采用的策略是抽象一个 ByteBufSeqAlloc:
BlockCache 的特点是追求冷读高吞吐,会从对象存储中大块读取数据段。AutoMQ 采用的策略是大块缓存对象存储中的原始数据:
图片
可以看到 LogCache 和 BlockCache 优化的本质都是根据自身缓存的特点通过大块 & 规整的内存分配来规避 Netty 内存分配策略带来的内存碎片问题。通过该方式,AutoMQ 在追尾读、冷读和大小消息等各种场景长期运行,也能将堆外内存的内存碎片率控制在 35% 以下,再也没有出现过堆外内存 OOM。
图片
Netty 的 PooledByteBufAllocator 不是银弹,使用的时候需要考虑内存碎片带来的实际内存占用的空间放大,规划预留出合理的 JVM 内存大小。如果只是使用 Netty 作为网络层框架,由 PooledByteBufAllocator 分配的内存生命周期会比较短,因此内存碎片引起的内存放大实际并不会很明显,不过仍旧建议使用 Netty 的系统都将版本升级到 4.1.52 之上,以获得更好的内存分配效率。如果使用 Netty 的 PooledByteBufAllocator 来做缓存,建议根据缓存的特征,使用大块内存分配然后再自行连续拆分,来规避 Netty 的内存碎片。
本文链接:http://www.28at.com/showinfo-26-101380-0.html基于Netty的自研流系统缓存实现挑战: 内存碎片与OOM困境
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com
下一篇: 如何利用负载均衡器实现终极自由