12023福建高三七市联考数学试题及答案解析
22023年福建高三七市联考数学试题难度适中,共有两卷,每卷均为120分,共计240分。以下是本次考试的试题及答案解析。
3第一卷
4 已知函数$f(x)=/sqrt{x-1}$,则$f(5)=$
5解析:将5代入函数中,得$f(5)=/sqrt{5-1}=2$。故答案为2。
6 若$/log_{/frac{1}{2}}{(x-1)}+/log_{/frac{1}{2}}{(x+3)}=4$,则$x=$
7解析:由对数的性质,$/log_{/frac{1}{2}}{(x-1)}+/log_{/frac{1}{2}}{(x+3)}=/log_{/frac{1}{2}}{(x-1)(x+3)}=4$,即$(x-1)(x+3)=/frac{1}{16}$。解得$x=/frac{5}{2}$或$x=-/frac{7}{2}$。但由题意可知$x>1$,故$x=/frac{5}{2}$。故答案为$/frac{5}{2}$。
8第二卷
9 已知$/triangle ABC$中,$AB=AC$,$/angle BAC=80^{/circ}$,$D$为$BC$上一点,且$/angle BAD=30^{/circ}$,则$/angle ACD$等于
10解析:连接$AD$,$CD$,则$/angle ACD=/angle ACB-/angle BCD=180^{/circ}-2/angle ABD=70^{/circ}$。故答案为70°。
11 若$a+b=3$,$a^2+b^2=5$,则$a^3+b^3=$
12解析:$(a+b)^2=a^2+2ab+b^2=9$,$ab=/frac{1}{2}(a^2+b^2-3)=(a+b)-3=-/frac{3}{2}$。由$a^3+b^3=(a+b)(a^2-ab+b^2)$,代入已知条件得$a^3+b^3=18$。故答案为18。
13 已知函数$f(x)=/frac{1}{x}$,则$f(x)+f(/frac{1}{x})=$
14解析:$f(/frac{1}{x})=/frac{1}{/frac{1}{x}}=x$,故$f(x)+f(/frac{1}{x})=/frac{1}{x}+x=/frac{1+x^2}{x}$。故答案为$/frac{1+x^2}{x}$。
15 若$x,y$满足$x+y=2$,$x^2+y^2=4$,则$x^3+y^3=$
16解析:$x^3+y^3=(x+y)(x^2-xy+y^2)=(x+y)((x+y)^2-3xy)=2(4-3xy)$。由$x+y=2$,$x^2+y^2=4$,可得$xy=-1$。代入已知条件得$x^3+y^3=14$。故答案为14。
17 若$/frac{/sin{x}}{/sin{(x+y)}}=/frac{a}{b}$,$/frac{/sin{y}}{/sin{(x+y)}}=/frac{c}{d}$,则$/frac{/sin{2x}}{/sin{2y}}=$
18解析:$/frac{/sin{2x}}{/sin{2y}}=/frac{2/sin{x}/cos{x}}{2/sin{y}/cos{y}}=/frac{/sin{x}}{/sin{y}}/cdot/frac{/cos{x}}{/cos{y}}=/frac{/frac{/sin{x}}{/sin{(x+y)}}}{/frac{/sin{y}}{/sin{(x+y)}}}/cdot/frac{1-/sin^2{x}}{1-/sin^2{y}}=/frac{ad}{bc}/cdot/frac{/cos^2{x}}{/cos^2{y}}=/frac{ad}{bc}/cdot/frac{/sin^2{y}}{/sin^2{x}}$。故答案为$/frac{ad}{bc}/cdot/frac{/sin^2{y}}{/sin^2{x}}$。
19以上为2023年福建高三七市联考数学试题及答案解析。
end
本文链接:http://www.28at.com/showinfo-134-11994-0.html2023福建高三七市联考数学试题及答案解析
声明:本网页内容旨在传播知识,若有侵权等问题请及时与本网联系,我们将在第一时间删除处理。邮件:2376512515@qq.com